+федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО)

		УТВЕРЖДАЮ
	Прорект	ор по научной работе
_		В.О. Никифоров
«		2022 г.
		м.П.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Оптические нанотехнологии

Группа научной специальности: 1.3. Физические науки

Научная специальность: Все специальности

Форма обучения: Очная

Рабочая программа составлена на основании Требований к программам подготовки научных и научно-педагогических кадров в аспирантуре, самостоятельно устанавливаемых федеральным государственным автономным образовательным учреждением высшего образования «Национальный исследовательский университет ИТМО»:

Код и наименование группы научной специальности	Реквизиты приказа об утверждении Требований Университета ИТМО
1.3 Физические науки	Приказ ректора №325-од от 31.03.2022
	Решение Научно-Технического совета №12 от 28.03.2022

Программу разработал: Капитанова П.В., к.т.н.

Программа одобрена на заседании НТС Университета ИТМО протокол №12 от 28.03.2022 года.

Место дисциплины в структуре учебного плана:

Блок 2, Образовательный компонент

Форма обучения: очная

Год обучения: 2

Семестр: 3

Форма аттестации: экзамен

Park Rogers IV Mostry	Семестр
Вид деятельности	3
Занятий в контактной форме, час.	20
из них лекции, час.	8
из них научно-практических занятий, час.	8
из них промежуточной аттестации (включая консультации), час.	4
Самостоятельная работа, час.	124
Всего часов	144
Всего зачетных единиц	4

Аннотация к рабочей программе дисциплины «Оптические нанотехнологии»

Дисциплина «Оптические нанотехнологии» реализуется в рамках образовательной программы высшего образования — программы подготовки научно-педагогических кадров в аспирантуре по группе научной специальности «Физические науки» по очной форме обучения на русском языке.

Разделы рабочей программы

- 1. Место дисциплины в структуре программы аспирантуры.
- 2. Планируемые результаты обучения по дисциплине.
- 3. Структура и содержание дисциплины.
- 4. Текущий контроль и промежуточная аттестация.
- 5. Учебно-методическое и информационное обеспечение дисциплины.
- 6. Материально-техническое обеспечение дисциплины.
- 7. Фонды оценочных средств текущего контроля и промежуточной аттестации.

1. Место дисциплины в структуре программы аспирантуры

Дисциплина «Оптические нанотехнологии» реализуется в третьем семестре в рамках Образовательного компонента Блока 2. Данная дисциплина создает системное научное знание о современной технике экспериментального исследования наноструктур и материалов, формирует систему представлений и понятий о возможностях и методах исследования наноразмерных структур и материалов оптическими методами, способствует развитию навыков создания, исследования и применения наноматериалов и их диагностики с использованием оптических методов.

2. Планируемые результаты обучения по дисциплине

Дисциплина ««Оптические нанотехнологии» направлена на компетенции УК-1: способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях, компетенции УК-3: готовность участвовать в работе российских и международных исследовательских коллективов по решению научных и научно-образовательных задач, компетенции УК-5: способность планировать и решать задачи собственного профессионального и личностного развития, компетенции ОПК-1: Способность самостоятельно осуществлять научно-исследовательскую в соответствующей профессиональной области с использованием деятельность современных методов исследования и информационно-коммуникационных технологий, компетенции ОПК-2: готовность к преподавательской деятельности по основным образовательным программам высшего образования в части следующих результатов обучения:

Формируемые компетенции (код	Планируемые результаты обучения по дисциплине (модулю)
компетенции)	
УК-1	Уметь: У5 (УК-1) проводить оригинальные исследования, результаты которых обладают научной целостностью и новизной

	Владеть: В1 (УК-1) навыками сбора, обработки, анализа и систематизации информации по теме исследования;
УК-3	Владеть: В2 (УК-3) технологиями оценки результатов коллективной деятельности по решению научных и научно-образовательных задач, в том числе ведущейся на иностранном языке
УК-5	Уметь: У1 (УК-5) планировать и решать задачи собственного профессионального и личностного развития, следуя этическим нормам в профессиональной деятельности Владеть: В1 (УК-5) приемами и технологиями целеполагания, оценки результатов деятельности по решению профессиональных задач
ОПК-1	Уметь: У2 (ОПК-1) планировать научные исследования, анализировать получаемые результаты и формулировать выводы по итогам научных исследований
ОПК-2	Знать: 33 (ОПК-2) тенденции развития соответствующей научной области и области профессиональной деятельности

Способы формирование планируемых результатов обучения

	Фо	рмы организац	ии занятий		
Результаты изучения дисциплины по уровням освоения (знать, уметь, владеть)	Лекции	Научно- практические занятия	Самостоятельная работа		
достижений, генерированию новых идей	УК-1: способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях				
У5 (УК-1) проводить оригинальные исследования, результаты которых обладают научной целостностью и новизной	+	+	+		
В1 (УК-1) навыками сбора, обработки, анализа и систематизации информации по теме исследования		+	+		
УК-3: готовность участвовать в рабисследовательских коллективов по решени задач	_		международных образовательных		
В2 (УК-3) технологиями оценки результатов коллективной деятельности по решению научных и научно-образовательных задач, в том числе ведущейся на иностранном языке		+	+		

УК-5: способность планировать и решать задличностного развития	ачи собс	твенного проф	рессионального и
У1 (УК-5) планировать и решать задачи собственного профессионального и личностного развития, следуя этическим нормам в профессиональной деятельности	+	+	+
В1 (УК-5) приемами и технологиями целеполагания, оценки результатов деятельности по решению профессиональных задач		+	+
ОПК-1: Способность самостоятельно осу	ществля	•	следовательскую
деятельность в соответствующей професси современных методов исследования и технологий			использованием имуникационных
деятельность в соответствующей професси современных методов исследования и	инфор		
деятельность в соответствующей професси современных методов исследования и технологий У2 (ОПК-1) планировать научные исследования, анализировать получаемые результаты и формулировать выводы по итогам	инфор + гельности	-	имуникационных +

3. Структура и содержание дисциплины

Изучение курса «Оптические нанотехнологии» включает в себя лекции, на которых рассматривается теоретическое содержание курса; научно-практические занятия, предусматривающие углубленное изучение и обсуждение вопросов, обозначенных в темах дисциплины; самостоятельную работу, заключающуюся в подготовке к лекционным и научно-практическим занятиям. Темы, рассматриваемые на лекциях и изучаемые самостоятельно, закрепляются на научно-практических занятиях, по вопросам, вызывающим затруднения, проводятся консультации.

Структура дисциплины:

			•	ебной і цоемко	_	-	
№ раздела	Наименование раздела дисциплины	Всего часов	Лекции	Научно-практические занятия	Семинары	Самостоятельная работа	Форма текущего контроля успеваемости и промежуточной аттестации

1	Физические основы исследования наносистем и наноматериалов	70	4	4	1	62	Опрос, собеседование,
2	Оптическая диагностика наносистем и наноматериалов	70	4	4	•	62	тестирование
3	Промежуточная аттестация	4	1	•	1	-	Экзамен в форме письменной работы с последующим собеседованием
итого:		144	8	8	-	124	

Содержание дисциплины:

№ раздела	Наименование раздела дисциплины	Содержание	Ссылки на результаты обучения
1	Физические основы исследования	Физика малых частиц. Методы характеризации свойств	У5 (УК-1) В1 (УК-1)
	наносистем и наноматериалов	Методы характеризации свойств наноструктурных объектов.	В2 (УК-3) У1 (УК-5)
2	Оптическая диагностика	Особенности оптического взаимодействия в наноразмерном окружении.	B1 (УК-5) У2 (ОПК-1)
2	наносистем и наноматериалов	Наноплазмоника — новая область нанотехнологий.	33 (ОПК-2)

Виды учебной и самостоятельной работы

Виды учебной работы	Ссылки на результаты обучения	Часы
На основе изучения литературы по темам лекционных и научно-практических занятий аспирант готовится к ответу на предложенные вопросы, к участию в дискуссиях, к тестированию по изученному материалу	У5 (УК-1) В1 (УК-1) В2 (УК-3) У1 (УК-5) В1 (УК-5) У2 (ОПК-1) 33 (ОПК-2)	20
Виды самостоятельной работы	Ссылки на результаты обучения	Часы на выполнение
Самостоятельная подготовка к лекционным и научно-практическим занятиям	У5 (УК-1) В1 (УК-1) В2 (УК-3) У1 (УК-5) В1 (УК-5) У2 (ОПК-1) 33 (ОПК-2)	124

Успешное освоение материала, изучаемого в ходе лекционных и научно-практических занятия, требует дополнительного самостоятельного изучения. По каждому разделу

учебной дисциплины предусмотрено изучение теоретического материала с использованием компьютерных технологий; самостоятельное изучение теоретического материала дисциплины с использованием Internet-ресурсов, информационных баз, методических разработок, специальной учебной и научной литературы.

4. Текущий контроль и промежуточная аттестация

Текущий контроль по дисциплине «Оптические нанотехнологии» осуществляется на лекциях и научно-практических занятиях и заключается в оценке активности и качества участия в опросах и собеседованиях по проблемам, изучаемых в рамках тем лекционных занятий, аргументированности позиции; в форме тестирования оценивается широта используемых теоретических знаний.

Промежуточная аттестация по дисциплине «Оптические нанотехнологии» проводится в третьем семестре в форме экзамена. Экзамен в форме письменной работы с последующим собеседованием.

Результаты сдачи экзамена оцениваются по шкале «неудовлетворительно», «удовлетворительно», «хорошо», «отлично». Оценки «отлично», «хорошо», «удовлетворительно» означают успешное прохождение промежуточной аттестации.

5. Учебно-методическое и информационное обеспечение дисциплины

Учебно-методическое и программное обеспечение дисциплины размещено на образовательном портале Университета ИТМО.

Профессиональные базы данных, интернет-ресурсы, электронные библиотеки и информационные справочные системы:

№	Ссылка на информационный	Наименование разработки в электронной форме	Доступность
	ресурс		
1.	http://e.lanbook.com/	ЭБС на платформе «Лань».	Индивидуальный
		Учебники и учебные пособия для	неограниченный доступ
		университетов издательства «Лань»	
2.	http://elibrary.ru/default	Научная электронная библиотека	Индивидуальный
	<u>x.asp</u>		неограниченный доступ
3.	http://window.edu.ru/	Библиотека. Единое окно доступа к	Индивидуальный
		информационным ресурсам	неограниченный доступ
4.	http://elbib.ru/	Российская электронная библиотека	Индивидуальный
			неограниченный доступ
5.	http://public.ru/	Публичная Интернет-библиотека	Индивидуальный
	-		неограниченный доступ
6.	http://lib.ifmo.ru/	Электронная библиотека НИУ	Индивидуальный
		ИТМО	неограниченный доступ

Основная литература:

- 1. Бутиков Е.И. Оптика : учебное пособие / Изд. 3-е, доп. СПб. Лань, 2012 .— 607с.
- 2. Бутиков Е.И. Оптика : учебное пособие / Москва : Лань, 2012 .— 607 с. : ил. (Учебники для вузов. Специальная литература) .— Доступ из локальной сети

университета или с домашних компьютеров после однократной саморегистрации с любого компьютера университета. — [Электронный доступ]: http://e.lanbook.com/books/element.php?pl1 cid=25&pl1 id=2764>.

- 3. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. / Изд. 2-е, испр. М.: ФИЗМАТЛИТ, 2007 .— 414с.
- 4. Калитеевский Н.И. Волновая оптика : доп. НМС по физике М-ва образования и науки РФ в качестве учебного пособия / Изд. 5-е, стер. СПб. Лань, 2008 .— 466 с.
 - 5. Климов В.В. Наноплазмоника / М.: ФИЗМАТЛИТ, 2009 .— 480 с.
- 6. Новотный Л., Хехт Б. Основы нанооптики [учебник] / пер. с англ. А. А. Коновко, О. А. Шутовой ; под ред. проф. В. В. Самарцева .— М. : Физматлит, 2009 .— 482 с.

Дополнительная литература:

- 1. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии/ Изд. 2-е, испр. М.: ФИЗМАТЛИТ, 2007 .— 414 с.
- 2. Ландау Л.Д., Лившиц Е.М.Теоретическая физика : в 10 т. : рек. М-вом образования РФ в качестве учебного пособия / Изд. 5-е, стер. М. : ФИЗМАТЛИТ, 2001 Т. 5: Статистическая физика Ч. 1 / 616 с.
- 3. Ландау Л.Д., Лившиц Е.М. Теоретическая физика: учебное пособие в 10 т. / .— Москва: Физматлит, 2007 Т. 7: Теория упругости.— 259 с.: ил.— Доступ из локальной сети университета или с домашних компьютеров после однократной саморегистрации с любого компьютера университета. [Электронный доступ]: http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=2233
- 4. Перлин Е.Ю., Вартанян Т.А., Федоров А.В. Физика твердого тела. Оптика полупроводников, диэлектриков, металлов : учебное пособие / М-во образ. и науки РФ ; Федер. агентство по образованию ; СПбГУ ИТМО .— СПб. : СПбГУ ИТМО, 2008 .— 214 с.
- 5. Нанохимия: учебное пособие / Г.Б. Сергеев.- М.: Книжный Дом "Университет", 2007.— 333, [3] с.: ил.

Аспирант может дополнить список использованной литературы иными современными источниками, не представленными в списке рекомендованной литературы.

Средства, обеспечивающие адаптацию электронных и печатных образовательных ресурсов для обучающихся из числа лиц с инвалидностью и ограниченными возможностями здоровья:

- 1) Доступ к изданиям электронно-библиотечной системы «Издательство «Лань» (https://e.lanbook.com), в адаптированных форматах для лиц с инвалидностью и OB3.
- 2) Специальные технические средства обучения коллективного и индивидуального пользования для лиц с инвалидностью и OB3:
- а) В библиотеке по адресам Кронверкский пр., д.49 и ул. Ломоносова, д.9 обучающимся, имеющим нарушения зрения, предоставляется компьютерное место с клавиатурой, маркированной шрифтом Брайля, и увеличительные лупы нового поколения с подсветкой и семикратным увеличением (лупы настольные с подсветкой PowerLux).
- 3) Услуги по адаптации учебно-методического материала для лиц с инвалидностью и OB3:
 - а) обучающиеся с нарушениями зрения по запросу могут получить

специальную учебную, научную литературу и периодические издания на основании действующего договора о сотрудничестве между Университетом ИТМО и Государственной библиотекой для слепых и слабовидящих; для обучающихся с нарушениями зрения учебные материалы могут быть предложены на шрифте Брайля.

б) обучающимся с нарушениями слуха по запросу предоставляются услуги сурдопереводчика на основании договора между Университетом ИТМО и «Всероссийским обществом глухих» (СПб РО ОООИ ВОГ).

6. Материально-техническое обеспечение дисциплины

Программное обеспечение:

Для обеспечения реализации дисциплины используется стандартный комплект программного обеспечения (ПО), включающий регулярно обновляемое лицензионное ПО Windows и MS Office.

Использование специализированного программного обеспечения для изучения дисциплины не требуется.

Наименование	Оснащенность специальных	Перечень лицензионного			
специальных помещений и	помещений и помещений для	программного обеспечения			
помещений для	самостоятельной работы				
самостоятельной работы	1				
Занятия лекционного типа:					
мультимедийный класс	аудитория, оснащенная	Операционная система			
	презентационной техникой	Microsoft Windows (версии			
	(проектор, экран,	от "Windows XP" до			
	компьютер/ноутбук)	"Windows 10")			
Занятия практического ти	па:				
мультимедийный класс,	аудитория, оснащенная	Операционная система			
компьютерный класс	презентационной техникой	Microsoft Windows (версии			
	(проектор, экран,	от "Windows XP" до			
	компьютер/ноутбук)	"Windows 10")			
Самостоятельная работа:					
компьютерный класс	15 персональных компьютеров	Операционная система			
	в составе локальной	Microsoft Windows (версии			
	вычислительной сети,	от "Windows XP" до			
	подключенной к Internet (30	"Windows 10")			
	Мбит/с).				

7. Фонды оценочных средств текущего контроля и промежуточной аттестации

Требования к структуре и содержанию фонда оценочных средств текущего контроля и промежуточной аттестации по дисциплине

Перечень оценочных средств, применяемых на каждом этапе проведения текущего контроля и промежуточной аттестации по дисциплине, представлены в таблице

Наименование	Краткая характеристика оценочного средства	Представление
оценочного средства		оценочного
		средства в фонде

Оценочные средства текущего контроля					
	Средство контроля, организованное как	Перечень тем,			
Тематический опрос	специальная беседа по тематике предыдущей	изучаемых в			
(в форме ответов на	лекции и рассчитанное на выяснение объема	рамках			
вопросы)	и качества знаний, усвоенных обучающимися	дисциплины			
	по определенному разделу, теме, проблеме.				
	Средство контроля, организованное как	Перечень тем,			
	свободная беседа, дискуссия по тематике	изучаемых в			
Собеседование	изучаемой дисциплины, рассчитанное на	рамках			
(в форме беседы,	выяснение объема знаний обучающегося по	дисциплины			
дискуссии по теме)	всем изученным разделам, темам; свободного				
diekyceim ne reme)	использования терминологии для				
	аргументированного выражения собственной				
	позиции.				
	Средство контроля, позволяющее получить	Образцы тестов			
Тестирование	оценку уровня фактических знаний аспиранта				
	по изученной теме.				
On	еночные средства промежуточной аттестации				
	Средство, позволяющее оценить	Перечень вопросов			
Письменная работа	сформированность систематических	к экзамену			
	представлений о методах научно-				
	исследовательской деятельности по				
	компьютерному моделированию процессов				
	криогенных систем				
Собеседование	Средство, позволяющее получить экспертную	Требования к			
	оценку знаний, умений и навыков по	порядку			
	компьютерному моделированию процессов	проведения			
	криогенных систем для оценивания и анализа	собеседования			
	различных фактов и явлений в своей				
	профессиональной области				

Критерии сформированности компетенций

Код формируемой компетенции	Планируемые результаты обучения по дисциплине	Не сформировано	Сформировано
УК-1	У5 (УК-1) проводить оригинальные исследования, результаты которых обладают научной целостностью и новизной	Отсутствие умения проводить оригинальные исследования, результаты которых обладают научной целостностью и новизной	Сформированные умения проводить оригинальные исследования, результаты которых обладают научной целостностью и новизной
	В1 (УК-1) навыками сбора, обработки, анализа и систематизации информации по теме исследования	Отсутствие навыков сбора, обработки, анализа и систематизации информации по теме исследования	Сформированные навыки сбора, обработки, анализа и систематизации информации по теме исследования
УК-3	В2 (УК-3) технологиями оценки результатов коллективной деятельности по решению научных и научнообразовательных задач, в том числе ведущейся на иностранном языке	Отсутствие владения технологиями оценки результатов коллективной деятельности по решению научных и научно-образовательных задач, в том числе ведущейся на иностранном языке	Сформированные владения технологиями оценки результатов коллективной деятельности по решению научных и научно-образовательных задач, в том числе ведущейся на иностранном языке
VIC 5	У1 (УК-5) планировать и решать задачи собственного профессионального и личностного развития, следуя этическим нормам в профессиональной деятельности	Отсутствие умения планировать и решать задачи собственного профессионального и личностного развития, следуя этическим нормам в профессиональной деятельности	Сформированные умения планировать и решать задачи собственного профессионального и личностного развития, следуя этическим нормам в профессиональной деятельности
УК-5	В1 (УК-5) приемами и технологиями целеполагания, оценки результатов деятельности по решению профессиональных задач	Отсутствие владений приемами и технологиями целеполагания, оценки результатов деятельности по решению профессиональных задач	Сформированные владения приемами и технологиями целеполагания, оценки результатов деятельности по решению профессиональных задач
ОПК-1	У2 (ОПК-1) планировать научные исследования, анализировать получаемые результаты и формулировать выводы по итогам научных исследований	Отсутствие умений планировать научные исследования, анализировать получаемые результаты и формулировать выводы по итогам научных исследований	Сформированные умения планировать научные исследования, анализировать получаемые результаты и формулировать выводы по итогам научных исследований
ОПК-2	33 (ОПК-2) тенденции развития соответствующей научной области и области профессиональной деятельности	Отсутствие знаний о тенденции развития соответствующей научной области и области профессиональной деятельности	Сформированные знания о тенденции развития соответствующей научной области и области профессиональной деятельности

Требования к структуре и содержанию оценочных средств.

Требования к порядку проведения экзамена в виде письменной работы:

Экзамен проводится в форме письменной работы с последующим собеседованием. Письменная работа выполняется по билетам, в билете 2 вопроса. Время выполнения письменной работы 30 минут. Собеседование проводится преподавателем дисциплины по темам билета. Аспиранту могут быть заданы дополнительные вопросы в рамках изученного курса.

Критерии выставления оценки:

Знания, умения и навыки обучающихся при промежуточном контроле в форме экзамена определяются оценками «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Оценка «неудовлетворительно» ставится аспиранту, который в ходе выполнения письменного экзаменационного задания и прохождения устного собеседования с преподавателем по вопросам экзаменационного билета демонстрирует незнание значительной части программного материала, допускает существенные ошибки, с большими затруднениями выполняет задания и задачи по дисциплине.

Минимальная положительная оценка «удовлетворительно» ставится аспиранту, выполнившему письменное экзаменационное задание и прошедшему устное собеседование с преподавателем по вопросам экзаменационного билета, если он в результате собеседования по вопросам экзаменационного билета демонстрирует усвоение только основного материала, но не знает отдельных деталей, допускает неточности, недостаточно правильные формулировки, нарушает последовательность в изложении программного материала и испытывает затруднения в выполнении заданий по дисциплине.

Оценка «хорошо» ставится аспиранту, успешно выполнившему письменное экзаменационное задание и прошедшему устное собеседование с преподавателем, если он в результате собеседования по вопросам экзаменационного билета демонстрирует твердое знание программного материала, грамотно и по существу излагает его, не допускает существенных неточностей в ответе на вопрос, может правильно применять теоретические положения и владеет необходимыми умениями и навыками при выполнении заданий по дисциплине.

Оценка «отлично» ставится аспиранту, успешно выполнившему письменное экзаменационное задание и прошедшему устное собеседование с преподавателем, если он в результате собеседования по вопросам экзаменационного билета демонстрирует глубокое и прочное усвоение всего программного материала, исчерпывающе, последовательно, грамотно и логически стройно его излагает, не затрудняется с ответом при видоизменении задания, свободно справляется с задачами и заданиями, правильно обосновывает принятые решения, умеет самостоятельно обобщать и излагать материал, не допуская ошибок.

Список вопросов к экзамену:

- 1. Что такое метаповерхности?
- 2. Что такое наноструктуры?
- 3. Укажите отличия диэлектрической нанофотоники от плазмонной.
- 4. Опишите мультипольный отклик микрорезонаторов.

- 5. Перечислите эффекты рассеяния и концентрации энергии в микрорезонаторах, связанные с эффектом интерференции излучения различных мультиполей.
- 6. Что такое моды шепчущих галерей? В каких резонаторах они возбуждаются?
- 7. Опишите оптические силы, действующие на дипольную наночастицу в гауссовом пучке.
- 8. Перовскиты в солнечной энергетике.
- 9. Наносенсоры.
- 10. Применение наноструктур в медицине и биофизике.
- 11. Автокорелляционная функция $g^{(2)}(t)$: определения и свойства.
- 12. Классический и квантовый свет.
- 13. Микрорезонаторы и их типы.
- 14. Фактор Парселла.
- 15. Типы однофотонных источников.
- 16. NV-центры в алмазах: атомная структура и диаграмма оптических переходов.
- 17. Перечислите основные электромагнитные свойства метаповерхностей.
- 18. Перечислите основные показатели научных журналов. Расшифруйте их названия. Каким образом они формируются?
- 19. Как метаповерхности могут быть использованы в магнитно-резонансной томографии?
- 20. Перечислите основные шаги при написании научной статьи.
- 21. Укажите рабочую частоту и типичное расстояние между излучателем и приемником согласно стандарту Qi.
- 22. Укажите рабочую частоту и типичное расстояние между излучателем и приемником согласно стандарту A4WP.
- 23. Как можно определить системы беспроводной передачи энергии согласно классификации система передачи энергии?
- 24. Укажите два способа увеличить эффективность систем беспроводной передачи энергии.
- 25. Укажите достоинства систем беспроводной передачи энергии на основе индуктивного и резонансного каплинга.
- 26. Что такое принцип оптической взаимности?
- 27. Расскажите содержание оптической теоремы и ее следствия.
- 28. Коллективные эффекты в плазмонике.
- 29. Фотовольтаические и термофотовольтаические системы.
- 30. Волноводы в нанофотонике.

Примерные варианты тестов:

Тест 1.

Выберите один из двух вариантов ответа.

- 1. Задача Ми описывает рассеяние на
 - (а) сферической частице из произвольного материала
 - (б) диэлектрической частице произвольной формы
- 2. Моды шепчущей галереи возбуждаются в частицах
 - (а) строго цилиндрической формы произвольного размера
 - (б) в частицах размера больше длины волны
- 3. Эффект Парселла заключается в
 - (а) усилении

- (б) ослаблении скорости излучения диполя при помещении в резонатор.
- 4. Оптическая теорема связывает сечение экстинкции частицы с амплитудой рассеяния
 - (а) назад
 - (б) вперед.
- 5. Способны ли современные методы литографии преодолеть диффракционный предел?
 - (a) да
 - (б) нет.
- 6. Можно ли описать излучение NV-центра в алмазе как излучение точечного диполя?
 - (а) нет
 - (б) да
- 7. Какой показатель цитируемости журнала выше
 - (а) импакт-фактор
 - (б) SJR?
- 8. Анаполь является результатом
 - (а) деструктивной
 - (б) конструктивной интерференции электрического дипольного и тороидального моментов.
- 9. Эффект Керкера является следствием возбуждения магнитного и электрического дипольных моментов
 - (а) в фазе
 - (б) в противофазе
- 10. Размер диэлектрического резонатора, в котором эффективно возбуждается первая мультипольная мода, должен превышать
 - (а) одну четверть длины волны
 - (б) одну вторую длины волны.
- 11. Первая мода сферического резонатора соответствует
 - (а) магнитному
 - (б) электрическому диполю
- 12. Резонатор из высокоиндексного материала переместили из вакуума в стекло. Рабочая частота его резонансов
 - (а) увеличилась
 - (б) уменьшилась
- 13. Сферическую плазмонную наночастицу поднесли к плоской границе двух диэлектриков. Плазмонный резонанс частицы расщепился по частоте на
 - (a) 2
 - (б) 3 резонанса.
- 14. Правда ли, что для формирования в металлической наночастице плазмонного резонанса, размер частицы должен превышать четверть длины волны (а) да (б) нет?
- 15. Как изменяется интенсивность поля в зазоре между двумя плазмонными наночастицами
 - (а) квадратично по полю
 - (б) зависимость четвертого порядка по полю?

Тест 2.

Выберите один из двух вариантов ответа.

1. Задача Ми описывает рассеяние

- (а) сферической частице произвольного размера
- (б) диэлектрической наночастице произвольной формы.
- 2. Моды шепчущей галереи возбуждаются в частицах
 - (а) вытянутой формы
 - (б) в частицах с поверхностями конечного радиуса кривизны.
- 3. Эффект Парселла заключается в усилении
 - (а) скорости излучения диполя при помещении в резонатор
 - (б) увеличении добротности резонатора при помещении диполя в резонатор.
- 4. Можно ли погасить рассеяние одиночной частицы в направлении «вперед» до нуля
 - (а) нет
 - (б) да?
- 5. Способны ли современные методы фабрикации наноструктур преодолеть диффракционный предел?
 - (a) да
 - (б) нет.
- 6. Как излучает группа хаотически распределенных NV центров в сферическом наноалмазе?
 - (а) симметрично по всем направлением
- (б) в зависимости от размера алмаза излучение может иметь направленный характер.
- 7. Ваша статья была процитирована вами же в другой статье в журнале с более высоким импакт-фактором, нежели чем первая статья. Увеличился ли Ваш индекс Хирша при этом?
 - (a) да
 - (б) нет
- 8. Анаполь является результатом интерференции электрического дипольного и
 - (а) тороидального
 - (б) магнитного дипольного моментов.
- 9. Эффект Керкера заключается в полном подавлении рассеяния частицы в направлении
 - (а) назад
 - (б) вперед.
- 10. Размер диэлектрического резонатора, в котором эффективно возбуждается первая мультипольная мода, должен превышать одну вторую длины волны
 - (а) в вакууме
 - (б) в материале резонатора.
- 11. Сколько лепестков рассеяния имеет квадрупольный момент?
 - (а) четыре
 - (б) шесть.
- 12. Резонатор из высокоиндексного материала переместили из вакуума в стекло. Длина волны его резонансов
 - (а) увеличилась
 - (б) уменьшилась.
- 13. Сферическую плазмонную наночастицу поднесли к плоской границе двух диэлектриков. Частота плазмонного резонанса
 - (а) увеличилась
 - (б) уменьшилась.
- 14. Правда ли, что для формирования в металлической наночастице плазмонного резонанса, размер частицы должен превышать одну вторую длины волны?
 - (a) да

- (б) нет
- 15. Объемная плазменная частота
 - (а) больше частоты поверхностного плазмона для одного и того же металла
 - (б) меньше частоты поверхностного плазмона для одного и того же металла

Тест 3.

Выберите один из двух вариантов ответа.

- 1. Задача Ми описывает рассеяние плоской волны на
 - (а) сферической частице
 - (б) частицы в форме бесконечного цилиндра.
- 2. Моды шепчущей галереи возбуждаются в частицах
 - (а) больше длины волны падающего излучения
 - (б) меньше длины волны падающего излучения
- 3. Влияет ли окружение микрорезонатора на коэффициент Парселла в нем
 - (a) да
 - (б) нет.
- 4. Можно ли погасить рассеяние одиночной частицы в направлении «назад» до нуля
 - (а) нет
 - (б) да?
- 5. Кантиливер является составной частью
 - (а) атомно-силового микроскопа
 - (б) сканирующего электронного микроскопа.
- 6. При изменении частоты излучения пучка оптическая сила изменяет свое направление при прохождении частицей
 - (а) нуля дипольного момента
 - (б) максимума дипольного момента.
- 7. Ваша статья была процитирована вашим коллегой в другой статье в журнале с более низким импакт-фактором, нежели чем первая статья. Увеличился ли Ваш индекс Хирша при этом?
 - (а) да
 - (б) нет
- 8. Частоты электрического и магнитного дипольного резонансов могут перекрываться в микрорезонаторе сферической формы?
 - (a) да
 - (б) нет.
- 9. Частоты электрического и магнитного дипольного резонансов могут перекрываться в микрорезонаторе цилиндрической формы?
 - (a) нет
 - (б) да.
- 10. При увеличении контраста сред диэлектрического резонанса сферической формы частота магнитного дипольного резонанса
 - (а) увеличивается
 - (б) уменьшается.
- 11. Сколько лепестков рассеяния имеет октупольный момент?
 - (а) шесть
 - (б) восемь.
- 12. Плазмонную наночастицу переместили из вакуума в стекло. Длина волны его резонансов
 - (а) увеличилась

- (б) уменьшилась.
- 13. Плазмонная наночастица приблизилась к границе раковой клетки. Частота плазмонного резонанса
 - (а) увеличилась
 - (б) уменьшилась.
- 14. Правда ли, что для формирования в металлической наночастице плазмонного резонанса, форма частицы ограничена геометрией Отто/Кречмана
 - (а) да
 - (б) нет
- 15. При увеличении радиуса кривизны частицы частота поверхностного плазмона
 - (а) увеличивается
 - (б) уменьшается