РОССИЙСКАЯ ФЕДЕРАЦИЯ

<u>路路路路路路</u>

密

密

密

密

密

密

密

密

密

密

密

密

密

密

密

密

密

密

密

密

密

密

密

密

密

密

路路

密

路路

密

密

密

密

密

密

密

密

斑

密

密

密

密

密

密

НА ПОЛЕЗНУЮ МОДЕЛЬ

№ 199498

ГЕТЕРОСТРУКТУРА ДЛИННОВОЛНОВОГО ВЕРТИКАЛЬНО-ИЗЛУЧАЮЩЕГО ЛАЗЕРА

Патентообладатель: федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" (Университет ИТМО) (RU)

Авторы: Андрюшкин Владислав Васильевич (RU), Бугров Владислав Евгеньевич (RU), Егоров Антон Юрьевич (RU), Новиков Иннокентий Игоревич (RU), Блохин Сергей Анатольевич (RU)

Заявка № 2019143339

Приоритет полезной модели 24 декабря 2019 г. Дата государственной регистрации в Государственном реестре полезных моделей Российской Федерации 03 сентября 2020 г. Срок действия исключительного права на полезную модель истекает 24 декабря 2029 г.

> Руководитель Федеральной службы по интеллектуальной собственности

-1. eller

Г.П. Ивлиев

密 密 密 密 密 密 密 密 密 密 密 路 密 密 密 密 田 密 密 密 田 密 改 B 密 密 密 路 密 密 密 密 密 密 密 密

密

РОССИЙСКАЯ ФЕДЕРАЦИЯ

199 498⁽¹³⁾ U1

フ

99498

(51) МПК *H01S 5/343* (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ОПИСАНИЕ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ

(52) СПК *H01S 5/343 (2020.01)*

 (21)(22) Заявка: 2019143339, 24.12.2019 (24) Дата начала отсчета срока действия патента: 24.12.2019 Дата регистрации: 03.09.2020 	 (72) Автор(ы): Андрюшкин Владислав Васильевич (RU), Бугров Владислав Евгеньевич (RU), Егоров Антон Юрьевич (RU), Новиков Иннокентий Игоревич (RU), Блохин Сергей Анатольевич (RU)
Приоритет(ы): (22) Дата подачи заявки: 24.12.2019 (45) Опубликовано: 03.09.2020 Бюл. № 25 Адрес для переписки: 197101, Санкт-Петербург, Кронверкский пр. 49, лит. А, Университет ИТМО, ОИС и НТИ	 (73) Патентообладатель(и): федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО" (Университет ИТМО) (RU) (56) Список документов, цитированных в отчете о поиске: RU 2525665 C2, 20.08.2014. RU 2261501 C2, 27.09.2005. RU 188629 U1, 18.04.2019. RU 2190910 C2, 10.10.2002. US 5594751 A1, 14.01.1997. RU 2703922 C2, 22.10.2019. US 7020172 B2, 28.03.2006. EP 2033282 B1, 31.10.2012. RU 2611555 C1, 28.02.2017. US 8488644 B2, 16.07.2013. RU 2645805 C1, 28.02.2018. WO 2011018734 A1, 17.02.2011.

(54) ГЕТЕРОСТРУКТУРА ДЛИННОВОЛНОВОГО ВЕРТИКАЛЬНО-ИЗЛУЧАЮЩЕГО ЛАЗЕРА

(57) Реферат:

 $\boldsymbol{\infty}$

ດ

4

ດ

ດ

Ľ

Полезная относится модель к оптоэлектронной технике и может быть использована при изготовлении вертикальноизлучающих лазеров, работающих в спектральном диапазоне 1530 - 1565 нм. Гетероструктура длинноволнового вертикальноизлучающего лазера содержит подложку из GaAs, нелегированные нижний И верхний распределенные брэгговские отражатели на основе слоев GaAs/AlGaAs, нижний и верхний внутрирезонаторные контактные слои InGaAsP/ InP n-типа, а также оптический микрорезонатор с активной областью на основе квантовых ям InAlGaAs и токовой апертурой на основе слоев p+ - InGaAlAs и n+ - InGaAlAs. Сущность полезной модели состоит в том, что слой n+ - InGaAlAs выполнен с микрорельефом, сформированным локальным удалением слоя, и имеет форму кольцевых углублений с внутренним диаметром 5-9 мкм и внешним диаметром 30-40 мкм, при этом соседние кольцевые углубления соединены между собой каналами шириной 10 мкм. Данный микрорельеф в форме кольцевых углублений обеспечивает увеличение площади соединения поверхностей гетероструктуры активной области поверхностным микрорельефом с И гетероструктуры верхнего распределенного брэгговского отражателя, что повышает эффективность спекания пластины гетероструктуры области активной с поверхностным микрорельефом с пластиной верхнего распределенного гетероструктуры

99498 U1

R U

-

Стр.: 2

Полезная модель относится к оптоэлектронной технике и может быть использована для изготовления вертикально-излучающих лазеров, работающих в спектральном диапазоне 1530 - 1565 нм.

Известны гетероструктуры вертикально-излучающих лазеров (ВИЛ), полученные ⁵ методом молекулярного соединения (т.н. метод спекания пластин) пластины гетероструктуры активной области на основе материалов InAlGaAs/InP с пластинами гетероструктур верхнего и нижнего распределенными брэгговскими отражателями (РБО) на основе материалов AlGaAs/GaAs. Гетероструктура активной области, сформированная на подложке InP, включает в себя область с квантовыми ямами,

и чередующимися с барьерными слоями, а в верхней своей части содержит заращенный туннельный переход. Такая конструкция гетероструктуры ВИЛ позволяет объединить преимущества обоих систем материалов на основе InP и GaAs.

Наиболее близкой к предлагаемой полезной модели является гетероструктура ВИЛ, содержащая подложку GaAs 1 (Фиг. 1), нелегированный нижний РБО 2 на основе слоев

- 15 GaAs/AlGaAs, нижний внутрирезонаторный контактный слой InGaAsP/InP 3 n-типа, оптический микрорезонатор 4 с активной областью 5 на основе квантовых ям InAlGaAs и токовой апертурой на основе слоев p+ - InGaAlAs 6 и n+ - InGaAlAs 7, верхний внутрирезонаторный контактный слой InGaAsP/InP n-типа 8, нелегированный верхний PEO 9 на основе слоев GaAs/AlGaAs [A.Syrbu et al., 1.5-mW single-mode operation of wafer-
- 20 fused 1550-nm VCSELs, IEEE Photonics Technology Letters 16, 1230 (2004), DOI: 10.1109/ LPT.2004.826099] или [A. Mereuta etal., Recent progress in 1.3- and 1.5-µm wave bandwaferfused VCSELs, Proc. SPIE 10017, 1001702 (2016), DOI: 10.1117/12.2246208]. Для формирования токовой апертуры используется концепция заращенного туннельного перехода. Изначально в слое n+ - InGaAlAs 7 гетероструктуры активной области
- 25 формируют поверхностный рельеф (Фиг. 2): путем локального удаления слоя n+ -InGaAlAs 7 в области 10. В результате последующей операции заращивания гетероструктуры активной области с поверхностным рельефом слоем InP n-типа, в области 10 формируется обратно-смещенный p-n-переход, а в области 11 - заращенный туннельный переход n+ - InGaAlAs/p+ - InGaAlAs. Следует отметить, что в зависимости
- 30 от метода сформированный локальным удалением слоя n+, имеет форму кольцевых углублений с внутренним диаметром 5-9 мкм и внешним диаметром 30-40 мкм, при этом соседние кольцевые углубления соединены между собой каналами шириной 10 мкм.

Форма кольцевых углублений с внутренним диаметром 5-9 мкм и внешним диаметром 30-40 мкм, соединенных с соседними кольцевыми углублениями между собой каналами шириной 10 мкм обеспечивает увеличение площади соприкосновения пластины активной области ВИЛ и пластины верхнего РБО, что приводит к наиболее плотному контакту пластин и повышению надежности процесса спекания. Сущность полезной модели поясняется фигурами.

40 На фиг. 1 схематично показано поперечное сечение единичного элемента прототипа гетероструктуры ВИЛ.

На фиг. 2 схематично показана топология поверхностного рельефа в гетероструктуре активной области для единичного элемента прототипа гетероструктуры ВИЛ.

На фиг. 3 схематично показано поперечное сечение единичного элемента предлагаемой гетероструктуры ВИЛ.

45

На фиг. 4 схематично показана топология поверхностного рельефа в гетероструктуре активной области для единичного элемента предлагаемой гетероструктуры ВИЛ.

Предлагаемая гетероструктура вертикально-излучающего лазера (фиг. 3) состоит

из подложки GaAs 1, нижнего РБО 2 на основе слоев GaAs/AlGaAs, нижнего внутрирезонаторного контактного слоя InGaAsP/InP 3 n-типа, оптического микрорезонатора 4 с активной областью 5 и токовой апертурой на основе слоев p+ - InGaAlAs 6 и n+ - InGaAlAs 7, верхнего внутрирезонаторного контактного слоя InGaAsP/

- ⁵ InP n-типа 8, нелегированного верхнего PБO 9 на основе слоев GaAs/AlGaAs. Активная область состоит из нескольких квантовых ям $In_{0,74}Ga_{0,26}As$, разделенных барьерными слоями $In_{0,53}Ga_{0,31}Al_{0,16}As$ (на фиг. не показан). Токовая апертура содержит область 10 с обратно-смещенным p-n-переходом и 11 с заращенным туннельным переходом n+/p+ InGaAlAs.
- Для формирования токовой апертуры используется концепция заращенного туннельного перехода. Изначально в слое n+ InGaAlAs 7 гетероструктуры активной области формируют поверхностный рельеф (Фиг. 4): путем локального удаления слоя n+ InGaAlAs 7 в области 10. В результате последующей операции заращивания гетероструктуры активной области с поверхностным рельефом слоем InP n-типа, в
- ¹⁵ области 10 формируется обратно-смещенный р-п-переход, а в области 11 заращенный туннельный переход n+ InGaAlAs/p+ InGaAlAs. Следует отметить, что в зависимости от метода эпитаксиального роста полупроводников может наблюдаться небольшая степень планаризации поверхностного рельефа и/или увеличение латеральных размеров, однако на заращенной поверхности отчетливо виден микрорельеф с некоторой 20
- модификацией исходной топологии.

При этом область 10, в простейшей случае, выполнена в форме кольцевых углублений с перпендикулярными каналами, связывающими соседние кольцевые углубления между собой и предназначенными для отвода воздуха и летучих соединений при спекании

25 пластин, и содержит легированный до уровня 1e20 см⁻³ р+ - слой InGaAlAs 6, который заращен верхним внутрирезонаторным контактным слоем InGaAsP/InP n-типа 8. Область

11 с заращенным туннельным переходом содержит легированный до уровня 1е20 см⁻³

р+ - слой InGaAlAs 6, на котором расположен легированный до уровня 1e20 см⁻³ n+ - слой InGaAlAs 7, который заращен верхним внутрирезонаторным контактным слоем InGaAsP/InP n-типа 8.

Выбор величины внутреннего диаметра кольцевого углубления, отвечающего как за токовое, так и оптическое ограничение, обусловлен необходимостью обеспечить одночастотный режим излучения и повысить уровень выходной мощности при работе вертикально-излучающего лазера, изготовленного из такой гетероструктуры. Расчетные

- ³⁵ оценки показывают, что для лазера с длиной волны генерации 1530-1565 нм при исходной высоте поверхностного рельефа в слое n+ слой InGaAlAs 7 не более 25 нм одночастотный режим работы наблюдается при диаметре мезы 5-9 мкм, что крайне важно для практических применений.
- ⁴⁰ Выбор величины внешнего диаметра кольцевого углубления обусловлен ограничениями топологии кристалла ВИЛ. Согласно анализу морфологии поверхности, при заращивании слоем 8 поверхностного рельефа, сформированного в слое n+ - слой InGaAlAs 7 гетероструктуры активной области, наблюдается эффективное увеличение латеральных размеров мез в 1.5-2 раза. В совокупности с необходимостью формирования металлизации к внутрирезонаторному контактному слою 8, а также учитывая
- ⁴⁵ технологические допуски для контактной фотолитографии, величина внешнего диаметра кольцевого углубления составляет 30-40 мкм. Допускается более сложная форма внешних границ кольцевого углубления в зависимости от проектной топологии кристалла ВИЛ.

Для предотвращения образования газообразных полостей на границах областей 9-10 по всей площади пластины гетероструктуры ВИЛ должны быть сформированы сквозные каналы шириной 10 мкм.

5

(57) Формула полезной модели

Гетероструктура длинноволнового вертикально-излучающего лазера, содержащая подложку из GaAs, нелегированные нижний и верхний распределенные брэгговские отражатели на основе слоев GaAs/AlGaAs, нижний и верхний внутрирезонаторные контактные слои InGaAsP/InP n-типа, а также оптический микрорезонатор с активной областью на основе квантовых ям InAlGaAs и токовой апертурой на основе слоев p+

- областью на основе квантовых ям InAlGaAs и токовой апертурой на основе слоев р+ - InGaAlAs и n+ - InGaAlAs, при этом последний выполнен с микрорельефом, сформированным локальным удалением, отличающаяся тем, что микрорельеф, сформированный локальным удалением слоя n+ - InGaAlAs, имеет форму кольцевых углублений с внутренним диаметром 5-9 мкм и внешним диаметром 30-40 мкм, при
- 15 этом соседние кольцевые углубления соединены между собой каналами шириной 10 мкм.

20

25

30

35

45

Фиг.2

